Spatio-temporal character of non-wavy and wavy Taylor–Couette flow
نویسندگان
چکیده
The stability of supercritical Couette flow has been studied extensively, but few measurements of the velocity field of flow have been made. Particle image velocimetry (PIV) was used to measure the axial and radial velocities in a meridional plane for non-wavy and wavy Taylor–Couette flow in the annulus between a rotating inner cylinder and a fixed outer cylinder with fixed end conditions. The experimental results for the Taylor vortex flow indicate that as the inner cylinder Reynolds number increases, the vortices become stronger and the outflow between pairs of vortices becomes increasingly jet-like. Wavy vortex flow is characterized by azimuthally wavy deformation of the vortices both axially and radially. The axial motion of the vortex centres decreases monotonically with increasing Reynolds number, but the radial motion of the vortex centres has a maximum at a moderate Reynolds number above that required for transition. Significant transfer of fluid between neighbouring vortices occurs in a cyclic fashion at certain points along an azimuthal wave, so that while one vortex grows in size, the two adjacent vortices become smaller, and vice versa. At other points in the azimuthal wave, there is an azimuthally local net axial flow in which fluid winds around the vortices with a sense corresponding to the axial deformation of the wavy vortex tube. These measurements also confirm that the shift-and-reflect symmetry used in computational studies of wavy vortex flow is a valid approach.
منابع مشابه
Hydromagnetic Taylor – Couette flow . Wavy modes . By A . P . WILL
We investigate magnetic Taylor–Couette flow in the presence of an imposed axial magnetic field. First we calculate nonlinear steady axisymmetric solutions and determine how their strength depends on the applied magnetic field. Then we perturb these solutions to find the critical Reynolds numbers for the appearance of wavy modes, and the related wavespeeds, at increasing magnetic field strength....
متن کاملChaotic mixing and transport in wavy Taylor–Couette flow
Chaotic transport and mixing in wavy cylindrical Couette flow has been studied in some detail, but previous studies have been limited to the velocity field at transition from Taylor–Couette flow to wavy flow or have used phenomenological, computational, or theoretical models of the flow. Recent particle image velocimetry measurements of wavy vortex flow provide the experimental three-dimensiona...
متن کاملEnd wall effects on the transitions between Taylor vortices and spiral vortices.
We present numerical simulations as well as experimental results concerning transitions between Taylor vortices and spiral vortices in the Taylor-Couette system with rigid, nonrotating lids at the cylinder ends. These transitions are performed by wavy structures appearing via a secondary bifurcation out of Taylor vortices and spirals, respectively. In the presence of these axial end walls, pure...
متن کاملThree-dimensional velocity field for wavy Taylor–Couette flow
The stability of wavy supercritical cylindrical Couette flow has been studied extensively, but few measurements of the velocity field in flow have been made. Particle image velocimetry was used to measure the azimuthal and radial velocities in latitudinal planes perpendicular to the axis of rotation for wavy cylindrical Couette flow in the annulus between a rotating inner cylinder and a fixed o...
متن کاملSimulation of Taylor-Couette flow. Part 2. Numerical results for wavy-vortex flow with one travelling wave
We use a numerical method that was described in Part 1 (Marcus 1984a) to solve the time-dependent Navier-Stokes equation and boundary conditions that govern Taylor-Couette flow. We compute several stable axisymmetric Taylor-vortex equilibria and several stable non-axisymmetric wavy-vortex flows that correspond to one travelling wave. For each flow we compute the energy, angular momentum, torque...
متن کامل